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ABSTRACT 

A method for evaluating the spatial variations in 

seismic motions for a linear, homogeneous and horizon-

tally stratified soil layer system is presented. The 

procedure accounts for: the focal depth and the ep-

icentral distance; the corresponding angle of in-

cidence; and, the relative contributions of both shear 

and Rayleigh waves. The inclined propagation of shear 

waves is studied using the multiple reflection refrac-

tion theory. The range of possible values of Rayleigh 

wave phase velocity in the soil layer system is deter-

mined, and using an averaging procedure the Rayleigh 

wave amplification factors are computed. The influences 

of various factors on the spatial variations in seismic 

response are discussed. The method is general so that 

it can be used for various problems involving spatial 

motion computations. The application of the method in 

computing the responses of a soil-pile system is de-

scribed and some typical results given. 



INTRODUCTION 

Records of ground motions during recent earth-

quakes have indicated that there are spatial varia-

tions in seismic motions. The earthquake motions in 

the soil at any depth for a particular location depend 

on the nature of incoming seismic waves in addition to 

certain other factors. These waves travel through a 

number of geologic formations and undergo multiple re-

flections, refractions and dispersions. The types of 

waves and their relative contributions to the ground 

motion are dependent on the epicentral distance and the 

focal depth (Dezfulian and Seed 1971; Tsai 1969; 

Yamahara 1970). At a site in the near-earthquake 

region, the motions will be comprised of several waves 

propagating at various velocities and spanning a wide 

range of frequencies (Trifunac and Brune 1970). In 

contrast, at a distant site the contributions to the 

motion by the various types of seismic waves will not 

overlap and it is not necessary to consider their com-

bined effect. 

The nature of seismic waves is usually not well 

defined, and both the geometric and elastic properties 

of the surface layers are often poorly delineated 



(Dezfulian and Seed 1971). Therefore, it is necessary 

to commence this theoretical study with a relatively 

simple, idealized model consisting of linear, homoge-

neous and horizontally stratified soil layers. Then, 

the layer boundaries are planes extending to infinity 

in both horizontal directions. Although shear waves 

are the most important components, the analysis of sev-

eral typical seismic records indicates that a signif-

icant portion of the earthquake ground motion consists 

of surface waves (Trifunac and Brune 1970). Fig. 1 

gives an idealized system showing the relation between 

the focal depth of the source, the epicentral distance 

of the station and the wave paths. The arrival time 

for each type of wave and the corresponding contribu-

tion to the total ground motion are dependent on the 

focal depth, the epicentral distance and the effects of 

multiple reflections, refractions and dispersions 

along the various paths. For sites of moderate ep-

icentral distance, the surface waves are usually masked 

by the shear waves and as a result, a small portion of 

the accelerations may be attributed to the surface 

waves. Rayleigh waves are the most significant among 

all surface waves (Richart et al 1970). Further, in 

the case of near sites, the direction of shear wave 



propagation may be inclined. Thus, the usual assump-

tion of energy transfer by means of vertically propa-

gating shear waves is valid only for large epicentral 

distances. 

A method for computing the three components of 

earthquake motion at a specified location is presented. 

The spatial variations in seismic motions are computed 

using wave propagation theory and assuming that the 

earthquake energy is transferred through the soil 

layers by both Rayleigh waves and inclined shear waves. 

Spatial variations in motion are compared for various 

epicentral distances and wave propagation assumptions. 

It is found that the surface waves (Rayleigh waves) 

make a significant contribution to the response at near 

sites, while the effect of inclining the shear wave is 

of secondary importance. The application of the method 

is described when examining the response of a typical 

soil-pile system. 

RAYLEIGH WAVE PROPAGATION 

Rayleigh waves may be caused by both types of body 

waves (dilatational and shear) and, unlike body waves, 

their velocity depends on the wave frequency and the 



wave length in addition tp the soil properties (Richart 

et al 1970). These waves propagate as plane waves and 

as a result, the displacements are independent of the 

transverse direction. The relationships for the veloc-

ities and stresses due to Rayleigh wave propagation in 

an elastic soil layer system may be established in 

terms of the phase velocity c and the wave number k
w 
 of 

plane Rayleigh waves, using the methods developed by 

Thomson (1950) and Haskell (1953). 

The body waves generated at the origin are com-

plex in nature and these waves, after travelling 

through different soil layers, result in a series of 

Rayleigh waves with different wave numbers propa-

gating at different velocities. Although there is no 

straightforward method of assigning a value for either 

the wave number or the phase velocity, it is possible 

to specify bounds for the Rayleigh wave propagational 

velocity in a layered soil strata. If 3L  is the lowest 

shear wave velocity in the soil layers and OR  is the 

shear wave velocity in rock, then the possible range 

for c is given by: 

[1] 0•93 1. ` c  ` 13 R 

In this range, the phase velocity of the plane Rayleigh 

wave may assume any value depending on the wave number. 



For any value of c the evaluation of kw  may be accom-

plished by means of the trial and error procedure given 

in Appendix II. 

The responses of the various soil layers due to 

Rayleigh wave propagation may be expressed in terms of 

the surface responses using transfer functions. In 

order to evaluate these transfer functions, an aver-

aging procedure is adopted. The various values of c 

within its possible range were considered, and it was 

found that only values of c for c/(31  less than 

gave consistent and meaningful results by exhibiting 

the required decay of motions with depth. R
1 

and (3.
n 

are the shear wave velocities in the surface layer and 

the lowest soil layer, respectively. The method of 

computation is as follows: 

1. Compute the possible range for the values of 

c. Take a set of c-values at regular intervals in this 

range. 

2. For each c-value, determine the wave number 

using the trial and error procedure given in Appendix 

II. For these values of c and kw, calculate the func-

tions F
1 

and F
2 which are defined in Appendix II, and 

then the surface velocities, which satisfy the follow-

ing relationship: 



[2] Wo/c = -(F2/F1 ) ii o/c 

where and are the particle velocities at the sur- 

face in the vertical and horizontal directions, re-

spectively. 

3. The horizontal response of the mth  interface 

is expressed by: 

[3] Cyc = [(Am)11 - (F2/F1 ) (Am)12] U/c 

where (Am)ij  is an element of the matrix [A
m
] defined 

in Appendix II and Um  is the horizontal particle veloc-

ity in the mth  interface. Then, the transfer function 

T
m 

for the mth  interface response in the horizontal 

direction is given by: 

[4] Tm  = (Am)11  - (F2/F1 ) (A
m
)12  

Using Eq. 4, all transfer functions T T T
n 

To,
' 

are computed where the subscript indicates the inter-

face number. 

4. Similarly, for each other value of c in its 

range, evaluate kw  and the transfer functions To, T 

, T. 

5. For any interface m, the transfer function Tm  

is taken as the average value for the various values of 

c in its possible range. Finally, the transfer func- 

tions To, T1 , , T
n for the horizontal components of 



the seismic responses of interfaces due to the propaga- 

tion of Rayleigh waves are evaluated. 

6. The procedure for computing the vertical 

transfer functions T
vo' T i,v

, T
vn 

is the same as 

that for evaluating To, T , T
n 
 with the only 

difference that T
vm 
 is expressed as: 

[5] T
vm (Am)21 - 

(F2/F1 ) (A
m
)22  =  

INCLINED SHEAR WAVES 

Extensive research has been carried out to deter-

mine the angle of incidence of earthquake motions 

(Suzuki 1932; Chandra 1972; Randall 1971). After 

observing the angle of incidence for about fifty earth-

quake cases at Hongo Japan, Suzuki (1932) concluded 

that the mean angle of incidence for these earthquakes 

at Hongo was 4°, its fluctuation being small. Fig. 2 

shows the relationship between the angle of incidence, 

the epicentral distance and the focal depth. 

Seismologists have developed a method for deter-

mining the incident angle of shear waves (Chandra 1972; 

Randall 1971). This method is based on a theoretical 

model of the upper mantle and suits distant sites. 

According to their findings, the ratio of the sine of 



the incident angle to the shear wave velocity in a 

layer is a constant for a site for specified values of 

focal depth and epicentral distance, with the epicentral 

distance being the more important factor. Qualitatively 

it may be stated that the angle of incidence is only 

significant for short distances. 

In the absence of accurate data, it is required to 

make some assumption regarding the angle of incidence. 

By choosing the surface layer velocity as 11200 fps 

(3420 m/s) in the earth model, Chandra (1972) computed 

the angle of incidence at the surface as approximately 

36° for large distances. Allowing for a model adjust-

ment factor of 1.5, the angle of incidence may be 

assumed as 54° for short distances. This corresponds 

to an angle of incidence e1 
at the surface: 

[6] 0
1 

= Sin
-1 

(0.0000740 

where 0
1 

is in degrees and G51  is in fps. For small 

values of 01, Eq. 6 may be reduced to the form: 

[7]  e 81  
1 240 

where 0
1 

is in degrees and (31  is in fps. The angle of 

incidence at the surface is given by Eq. 7 for short and 

moderate distances; and is zero for large distances. 

When an inclined shear wave meets an interface. 



there are four resultant waves, namely, the transmitted 

shear wave, the reflected shear wave, the transmitted P-

wave (dilatational body wave) and the reflected P-wave. 

As the angle of inclination decreases, the amplitude of 

the emitted P-waves tends to become unimportant. There-

fore, it is reasonable in such cases to assume that only 

shear waves are emitted at an interface due to an inci-

dent shear wave. 

When shear waves travel in an inclined direction, 

there is not only a time lag in the vertical direction, 

but also one in the horizontal direction. Thus, two 

locations at the same level and horizontally separated 

do not have an identical motion at any time t. There-

fore it is required to clearly define the locations at 

which responses are to be computed. In a case where 

only layer responses are considered, the locations are 

taken along a vertical line. Then the response of layer 

interface k refers to the response of the point of 

intersection of this vertical line with the interface k. 

IDEALIZED PATH OF SHEAR WAVE PROPAGATION 

The idealized three dimensional soil medium is 

shown in Fig. 3. It is assumed that the shear waves 

that cause motions on the x-z plane are plane waves and 



that these motions are independent of waves on the y-z 

plane. An idealized path of the wave propagation on the 

x-z plane is given in Fig. 4-a. The wave path in the 

k
th 

layer makes an angle of inclination 0k  with the 

vertical, and as the wave transmits upward into the 

k-1
th 

layer, there occurs a deviation in its path at 

the boundary and the angle of inclination alters to 

0k-1 in the k-1
th 

layer. The deviation satisfies the 

relationship: 

[8] R
k
/(3,

k-1 
= Sin 0

k
/Sin 0

k-1 

A wave signal that moves upward and reaches the loca-

tion 0
k 
at any time t continues on its path and reaches 

the location 0' at time t+At, where At is the time lag 

between 0
k 
and 0'. The difference in arrival times of 

the same wave signal at any two locations is termed the 

time lag between them. 

The particle motions due to shear waves are in a 

direction normal to that of the wave propagation. Then, 

two locations 0
k-1 

and 0' in Fig. 4-b get excited simul- 

taneously by the same wave signal. In order to mark all 

locations which have no time lag with respect to Ok-1 , 

the procedure involves projecting the line Ok...1  - 0' 

both ways such that the direction of this extended line 

is normal to the wave path in any layer. Fig. 4-a shows 



the locus of all such points which have zero time lag 

with respect to one another and this may be termed an 

isolag. It is important to note that the amplitudes of 

motions at these points are not equal because they are 

at different elevations. 

In general, for any two locations in the soil 

medium, there is a time lag between them and this may 

be decomposed into a vertical time lag component and a 

horizontal time lag component. For example, if tz  is 

the time lag between On  and Os  in Fig. 4-a, then 

[9] t R,
t vt + t ht 

where tvk  is the vertical time lag between On  and Os  

and t
hk is the horizontal time lag between them. 

RESPONSES OF LAYERED SOIL SYSTEMS TO SHEAR WAVES 

The theory of multiple reflections and refractions 

may be utilized to compute the seismic responses of the 

layered soil system shown in Fig. 4-a. A typical 

interface between the kth and k+lth layers as shown in 

Fig. 5-b is considered. The impedance ratio between 

two adjacent layers is defined by: 

[10] uk  
POk  

Pk+1 13k+1 



where p is the appropriate layer density. When an up-

ward wave signal is incident on this interface there is 

an upward transmission into the k
th 

layer and a downward 

reflection back into the k+l th layer. In the same way 

there is a downward transmission and an upward reflec-

tion when the incident signal is downward. The co-

efficients of upward reflection, downward reflection, 

upward transmission and downward transmission at inter-

face k are respectively (Kobayashi and Kagami 1972): 

(R
u
)k  

(Rd )k 

(T
u
)k  

(Td)k  

When a wave travels upward, it takes some time for the 

wave to travel from the bedrock level to the various 

soil interfaces. Between two adjacent interface points 

such as Ok  and Ok-1 , corresponding to the layer k in 

Fig. 4, the time lag is: 

[12] t = 1-1
k
1 /13 

t k 

where h' is h
k 
Cos 0

k' 
h being the appropriate layer 

thickness. For the layered soil system in Fig. 5-a the 

pertinent equations are: 



R
1
(0 = F1(t-hi/ 1 ) 

F
1

(T
u
)1  F2(t-W2/82) + (Ru)1  Ri(t-hi/y 

R2(t) (Rd)1  F2(t-W2/82) + (Td ), R1(t-hi/R1 ) 

F2(t) = (T , u)2  F3(t-W3/133) + (Ru
)2  R2(t-h2/ 2) 

• • • 

R k(t) (P ) Fk(t-Wk/8k) + (Td)k...1  

[13] F k(t) 

R (t-hi  /R ) k-1 k-1 k-1 

= (1"
u'k F

(t h /8 ) ( 
''  

R ) k k k 

R
u
)
k 

• • • 

R
n
(t)

(Rd)n-1 Fn(t-hin"n)  + (Td)n-1 

Rn _ 1 (t-h in _ 1 /Bn _ 1 ) 

F
n
(t) (T

u
)
n 
 Fni_ 1 (t) 

Fn+1(t) = Base rock response 

where F
k 
and R

k 
are the transmitted and reflected compo-

nents of the kth  interface response, respectively. 

The values of response components Fk  and Rk  for the 

various layer interfaces at any time t are evaluated 

with the aid of their previous values which are known. 

Thus, the method is a step-by-step procedure and the 

components Fk  and Rk  may refer to displacements, veloc- 



ities or accelerations. When the responses considered 

are the accelerations, the required equation is: 

•• 

[14] uk(t)  = Fk(t-hk/q) + Rk(t) 

where u
k(0 is the acceleration at time t in the x 

direction. 

If observed earthquake motions at the bed rock 

level are available, Eq. 13 may be used repeatedly to 

compute the earthquake motions at various interface 

points proceeding from bottom to top. However, there 

are only a few earthquake records available for the bed 

rock level while most others are records of motion at 

the surface. The method needs modification to simplfy 

the layer response computation based on the known sur- 

face response. Referring to the soil layer system 

shown in Fig. 6 the relevant equations are: 

F
1
(t) = R1 (t) = half the surface response 

at time t 

[15] 

F 2 (t) 
[(T

u
)1 ]-1  [F

1
(t+hi/61 ) 

R1(t-h1/01 )]   

( R u ) 1 

R 2 (t)
(Rd )1  F2 (t) + (Td ), R 1 (t-hi/(31 ) 

• • • 

F
k
(t) = [(Tu)k _ 1]-1  [Fk _ 1 (t+Wk _ 1

/ k _1
) - 



(R
u
)k...1  Rk _ 1(t-hk _ 1 /6k _ 1 )3 

R k(t) = (R Fk(t) + (Td)k _ i  

R
k-1
(t-h/6k-1) 

Fn(t) =  [(T
u
)
n..1
]-1  [Fn _ 1 (t+hri _ 1 /611-1 ) 

(yn_i Rn-1n 
(t-hl-1 

 /6n-1  )] 

R
n
(t) 

(Rd)n-1 F
n
(t) + (Td)n-1 

R
n-1(t-hl /6 ) n-1 n-1 

F
n+1

[(T
u
)n]-1  [F

n
(t+hr11/6n)] 

The acceleration at the top of the k
th 

[16] u k(t) = Fk(t) + Rk(t) 

layer is: 

The response of the soil layers may be determined 

using Eq. 15 if the surface motions during an earth-

quake are known. 

METHOD FOR SPATIAL MOTIONS 

The computation of the three components of earth-

quake motions at certain specified locations may be 

accomplished by means of a three dimensional analysis. 

However, such a procedure is complicated and therefore 

a simpler method involving plane wave motions is 



utilized. Certain broad assumptions are made in order 

to facilitate these computations: 

1. The motions on the x-z plane are independent 

of the y direction, and similarly, the motions on the 

y-z plane are independent of x. 

2. For distant sites, the vertical shear wave 

propagation assumption is valid. For near sites, the 

combined effect of Rayleigh waves and inclined shear 

waves is accounted for. 

3. The propagation of shear waves and Rayleigh 

waves are independent of each other. 

4. The angle of incidence in degrees for near 

sites is 131 /240 where 13
1 
is in fps. 

5. Only shear waves are emitted at an interface 

due to an incident shear wave. 

Computational Procedure  

The computational procedure requires a clear iden- 

tification of the various response locations. For this 

purpose a vertical line is taken as the reference as 

indicated in Fig. 3, and the horizontal distances (x and 

y coordinates) are measured from this line. Any point 

in space is then defined 



by its x and y coordinates and the interface on which it 

lies. The following procedure for computing spatial 

motions is followed systematically: 

1. For each point in the required set where motions are 

to be computed, list the x and y coordinates and the 

interface number corresponding to the point's 

location. 

2. Determine the angle of incidence in degrees of the 

shear wave at the surface which is 81/240 where 

is in fps when the site is near, and zero for a far 

site. Find the angles of inclination of the shear 

wave in the various layers using Eq. 8. 

3. Compute the x directional time lag for each point 

with respect to the reference line 0
n
-O. Referring 

to Fig. 3, the time lag of Pk  is measured with 

relation to 0
k 
while that of P

k-1 
is ascertained 

with reference to 0k-1* 
As both P

k 
and P

k-1 
have 

the same x coordinate, the x directional time lags 

for both P
k 
and P

k-1 
are equal. In a similar way, 

the y directional time lags for the various points 

are determined. 

4. For short epicentral distances, it may be assumed 

that the relative contribution of shear waves is 

75%. When the ratio of the epicentral distance to 



the focal depth reaches 5, only shear waves need be 

considered. For distances in between these limits, 

interpolation is required. Let the contribution of 

shear waves be denoted by E. 

5. If there is any contribution due to Rayleigh waves 

(/l), then evaluate the transfer functions for 

interface responses due to Rayleigh wave propaga-

tion using the procedure given earlier. For the 

k
th 

layer, these transfer functions are Tk  and Tvk  

for the horizontal and vertical motions. The 

response of the k
th 

layer as a result of Rayleigh 

wave motions at any time t may be computed as the 

product of (1-), its transfer function and the sur-

face response at time t. 

6. If the surface responses are available as data, then 

these motions are valid for the point 0 on the 

reference line (Fig. 4-a). Let S(t) be the exci-

tation due to incident waves arriving at 0 at any 

time t. This excitation may be resolved into two 

portions, one due to shear wave propagation and the 

other due to Rayleigh waves. The portion of the 

excitation carried by shear waves is CS(t) and the 

remaining portion (1-C)S(t) is taken by Rayleigh 

waves. If instead of the surface response the base 



motions are available, then they refer to the point 

0
n
. 

7.	 From the data for 0
n 
or 0, proceed and complete the 

response calculations for points such as Ok  and 

0
k-1 using shear wave propagation theory. The ver-

tical time lag between the two adjacent interface 

points Ok _ l and O k is given by h k/Pk. If motions at 

0
n

are available, then Eqs. 13 and 14 are appli- 

cable, while Eqs. 15 and 16 are to be used for the 

case of motions given at O. First the x direction 

motions (E-W direction) are computed for the entire 

period of the record. Let Lo(t), u.j(t), 

ul
n  (t) be the computed x direction motions of inter-

face points 0, 01 , ... , 0
n 
at time t. As Rayleigh 

waves were not yet accounted for, a correction is 
•• 

required in the values. Let uo(t), ul (t), , 

u
n(t) be the corrected x direction motions at the 

interface points. Then the following relationships 

hold: 

L1 0 (t) = iJ(1) (t) 

U l (t) = c uj(t) + (1-c) T1  iq) (t) 

[17] u k(t) = C ull((t) + (1-0 Tk  uO(t) 



u n(t) = C un(t) + (1-c) Tn  11,13(0 

There is a computational advantage in storing the 

pre-correction values of the x direction motions, 
•• •• •• 

namely, u(')(t), ui(t), ... , un(t). In a similar 

way the y direction (N-S direction) motions v:p(t), 
.. .. 
v.j(t), ... , vs

n
(t) are computed and stored. The 

relationships in Eq. 17 hold for y direction motions 

if u is replaced by v in all expressions. 

8. The spatial motions at the various required loca- 

tions are computed one by one. For example, if the 

responses at 0k and Pk in Fig. 3 are required, then 

they may be computed using the following relation-

ships: 

uok(t) = C u0t) + (1-c) Tk  u(')(t) 

vok(t)  = C v;(
(t) + (1-) Tk  volt) 

[18] 

w
ok
(t) = C tan 0k kk  

[u 1 (t) + v 1 (t)] + (1-0 

Tvko o 
[u'(t) + vi(t)] 

u pk(t) . E uk(t-thp) + (1-0 Tk  u,;(t-thp) 

•• •• 

v pk(t) = C q(t-tnp) + (1-E) Tk  volt-thp) 



w pk(t) = tan O k[uk(t-thp) + vk(t-thp)] 

+ (1-0 T
vk 
[e

o
(t-t
hpo 
) + vi(t-thp  )] 

ILLUSTRATIVE EXAMPLES 

The influence of the epicentral distance and the 

focal depth on soil layer amplification is indicated by 

considering the four layer system (System 2) described 

in Table 1. When the ratio of the epicentral distance 

to the focal depth exceeds 5, the site is considered as 

distant. A computer program has been developed to facil-

itate the computation of the responses of the soil inter- 

face reference points such as 0, 01 , , O
n 
 in Fig. 

4-a due to the propagation of Rayleigh waves and in-

clined shear waves. The E-W component of the motion for 

the first twelve seconds during the Olympia Earthquake, 

1949 was fed in as input at the base rock level and the 

motions at interface points have been computed using 

this program. Fig. 7 shows the surface responses of 

this system for three specific cases: 

1. Nearby location; contribution of Rayleigh 

waves considered as 25% with the remaining 

contribution from the inclined propagation of 

shear waves. 



2. Nearby location; inclined propagation of 

shear waves. 

3. Distant location; vertical propagation of 

shear waves. 

These results show that the response amplification 

due to soil layering is greater in magnitude when the 

contribution of Rayleigh waves is accounted for. The 

difference in the response curves for the near and 

distant sites is small when only the shear waves are 

considered in the computation. 

The importance of spatial seismic motions is il-

lustrated by studying the responses at different loca-

tions of the three layer system (System 1) described 

in Table 1. In order to accomplish this a computer 

program has been developed which can account for the 

inclined propagation of shear waves and the Rayleigh 

wave propagation. The variations in spatial motions 

are demonstrated by considering four locations on the 

x-z plane; locations 1 and 2 are at the bed rock 

level and at a distance of 50 ft (15.24 m) apart, while 

locations 3 and 4 are at the surface and directly above 

1 and 2 respectively. Fig. 8 shows the responses at 

these locations due to the E-W component of accelera-

tions for the first 0.5 second during the El Centro 



Earthquake 1940, which was fed in at the bed rock level. 

It is obvious from this example that motions at the same 

levels are practically identical, except for a time lag 

between these motions. 

RESPONSES OF A SOIL-PILE SYSTEM 

The method for spatial motion computations is 

general so that it can be used for a variety of prob-

lems. Its application in studying the response of a 

soil-pile system with the finite element method il-

lustrates a major class of problems that can be consid-

ered. Using the theory of spatial variations in seismic 

motions, the absolute boundary accelerations of the 

system are computed first. What remains to be consid-

ered is a computational procedure for evaluating the 

unknown responses at interior locations including the 

pile cap, which will satisfy boundary compatibility 

and equilibrium of the system. The dimensions of the 

soil-pile system are chosen so that free field condi-

tions can be assumed at the boundary. The length of 

the pile, the total depth of soil layers and the shear 

wave velocities as well as the predominant period of 

ground motions are important factors in defining these 

dimensions of the system. 



The soil-pile system is an axisymmetric structure 

and the nonsymmetric excitation of the system can be 

separated into a series of analyses in different har-

monics. Thus, the required data for the final dynamic 

analysis are the radial, circumferential and axial 

components of the absolute boundary accelerations in 

each significant harmonic. Fig. 9-a shows the discre- 

tized structure and the boundary nodes at which these 

coefficients are specified. Of these nodes, 1 to 5, 

15, 24, 29 and 59 lie on interfaces between different 

soil layers. The remaining nodes, namely, 6, 33 and 

39 are between interfaces. The acceleration coeffi-

cients at node 15 in the various harmonics for any time 

t are described as an example. In order to accomplish 

this, it is necessary to consider the boundary acceler-

ations at all points along the nodal ring 15 as shown 

in Fig. 9-b. Once the cylindrical components of accel-

erations at any time t at all points along the nodal 

ring 15 are known, then it is possible to find the 

acceleration coefficients in each significant harmonic 

at that time. However, it is not possible to use a 

general expression for accelerations along a nodal 

ring and then find the required acceleration coeffi-

cients at the node in the various harmonics. There- 



fore, the accelerations at a few selected points are 

first determined. It is more convenient to have 12, 

16 or 8 points so that the averaging is adequate. The 

radial, circumferential and axial components of accel-

erations at time t for the 12 selected points (spaced 

at regular angular distances of 30° as shown in Fig. 

9-c) along the nodal ring are computed. Then the co-

efficients of acceleration in the different harmonics 

at node 15 are computed by means of an averaging proce-

dure. 

The boundary acceleration coefficients in the var-

ious harmonics are used as input for the final dynamic 

analysis which utilizes the finite element method. 

The dynamic analysis is carried out using a step-by-

step procedure incorporating the linear acceleration 

method (Wilson and Clough 1962). The response of a 60 

ft (18.29 m) long pile, 1.25 ft (0.38 m) in diameter, 

founded in 140 ft (42.67 m) of sand overlying bed rock 

was considered. This response was computed for dif-

ferent earthquakes and for different wave propagation 

assumptions. For comparison purposes, the pile in dry 

sand was considered for four specific cases: 

1. Pile at a location near the source - travel-

ling wave solution; contribution of Rayleigh 



waves considered as 25% with the remaining 

contribution from the inclined propagation of 

shear waves. 

2. Pile at a location near the source - travel-

ling wave solution; inclined propagation of 

shear waves. 

3. Pile at distant location - travelling wave 

solution; vertical propagation of shear 

waves. 

4. Pile at distant location - rigid base solu-

tion; assumption that all points on the 

boundary of the soil-pile system move 

simultaneously. 

Three different earthquakes were used in this study: 

Olympia Earthquake, 1949; El Centro Earthquake, 1940; 

and, accelerograms from the Pacoima dam site recorded 

during the San Fernando Earthquake, 1971. 

Fig. 10 gives a comparison of the responses of the 

pile cap for the different assumptions during the San 

Fernando Earthquake. It can be seen that the rigid 

base solution under estimates the motions. The maximum 

acceleration using the rigid base solution is 14.22 ft/ 

sec2  (4.33 m/sec2) while its values are 22.12, 20.65 and 

18.30 ft/sec
2 
(6.74, 6.29 and 5.58 m/sec

2
) respectively 



for cases 1, 2 and 3. The results are similar for the 

other two earthquakes and Table 2 gives the absolute 

maximum accelerations of the pile cap for the four cases 

during these earthquakes. The presence of the pile is 

beneficial as anticipated. When the epicentral dis-

tance decreased, the response of the soil-pile system 

increased. The data clearly indicate that a travelling 

wave solution is required to estimate the responses of 

the system, as otherwise the response is under 

estimated. 

SUMMARY AND CONCLUSIONS 

In the computation of the seismic response of 

structures, the effects of travelling seismic waves are 

usually accounted for by assuming that the earthquake 

energy is only carried by vertically propagating shear 

waves, or that the structure rests on a rigid, uniform 

base. A survey of field observations and computations 

by geophysicists show that the direction of wave propa-

gation is inclined for most sites where seismic effects 

are significant. Many strong motion records for near 

sites reveal that a part of these motions are associ- 

ated with surface waves. For this reason, the spatial 



variations in seismic motions were studied taking into 

account the inclined propagation of shear waves and the 

presence of Rayleigh waves which are the most important 

of the surface waves. Certain broad assumptions were 

made with regard to the relative contributions of these 

waves, the angle of incidence, the decomposition of 

waves at soil interfaces and the time lags in motions 

for various site distances. The inclined shear wave 

propagation was accounted for by extending the method 

of multiple reflections and refractions. The Rayleigh 

wave amplification was considered in the frequency 

domain by assuming that these waves are uniformly 

spread in the anticipated range of phase velocities. 

Using these methods, it was possible to compute the 

seismic motion record in the three directions at any 

points. These seismic motion records can then be used 

as the boundary conditions for the solution of rela-

tively complex soil-structure interaction problems. 
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Appendix I - Notation 

The following symbols are used in this paper: 

[A] = matrix relating n
th 
 interface re- 

sponse due to Rayleigh wave propaga- 

tion 

Aid = elements of [A] 

[A
n
] = same as [A] 

[Am] = matrix relating interface responses 

due to Rayleigh wave propagation 

defined by Eq. 19 

(Am)ij = elements of [Am] 

[am] = matrix relating interface responses 

due to Rayleigh wave propagation 

defined by Eq. 20 

(a
m
)
ij

= elements of [am
] 

c = Rayleigh wave propagational velocity 

F
k
(t) = transmitted component of kth  inter-

face response at time t 



F1,  F2,  F3, F
4 
= functions used in Rayleigh wave 

propagation defined by Eq. 21 

h
k

= thickness of layer k 

hk = hk  Cos O k  

k
w

= wave number 

L = wave length 

P
m

= function used in Rayleigh wave propa-

gation defined by Eq. 18-d 

Qm = function used in Rayleigh wave propa-

gation defined by Eq. 18-d 

R
d

= downward reflection coefficient 

R k(t)
= reflected component of kth  interface 

response at time t 

R
u

= upward reflection coefficient 

r
am

= function used in Rayleigh wave propa-

gation defined by Eq. 18-a 

rbm = function used in Rayleigh wave propa-

gation defined by Eq. 18-b 



r
m

= function used in Rayleigh wave propa- 

S(t) 

gation defined by Eq. 18-c 

excitation due to incident wave at 

time t 

T
d

= downward transmission coefficient 

transfer function for horizontal 

response of the mth  interface due to 

Rayleigh wave propagation 

T
u

upward transmission coefficient 

Tvm 
 

transfer function for vertical re-

sponse of the mth  interface due to 

Rayleigh wave propagation 

time 

tht
= horizontal time lag 

t = time lag 

tvt
vertical time lag 

u
o

= particle velocity at the surface in x 

direction 

T 
m 



m 
particle velocity at the mth  inter-

face in x direction 

u k (t ) 

uk(t) 

v k  (t) 

acceleration in x direction due to 

the propagation of Rayleigh waves 

and inclined shear waves 

acceleration in x direction due to 

the propagation of shear waves alone 

particle displacement in the circum-

ferential or y direction 

acceleration in y direction due to 

the propagation of Rayleigh waves and 

inclined shear waves 

acceleration in y direction due to 

the propagation of shear waves alone 

o particle velocity at the surface in 

z direction 

a = P-wave velocity 

13, = shear wave velocity 

13. L lowest shear wave velocity in the 



soil layers 

R R = shear wave velocity in rock 

e
k

= angle of inclination of shear wave 

in the k
th 

layer 

p = impedance ratio 

t = contribution of shear waves in the 

response 

P = mass density 

w = frequency in radians/second 

Superscripts 

= first derivative with respect to time 

= second derivative with respect to 

time 

Subscripts 

h = horizontal direction 

k = layer or interface k 

2. = lag 



= layer or interface m 

= layer n, lowest soil layer or inter-

face n 

v = vertical direction 



Appendix II - Layer Matrices and Determination 

of Rayleigh Wave Number 

This appendix gives the functions and matrices 

used for studying the Rayleigh wave propagation through 

soil layers, and describes a computational procedure 

for determining the wave number kw  for a specified 

phase velocity c. 

1. Functions and Matrices  

The various layers and interfaces are shown in Fig. 

The details of the mth layer are: 

p
m 
= density 

h
m 
= thickness 

8
m 
= shear wave velocity 

a
m 
= dilatational wave velocity 

k
w 
= w/c = 27/L = wave number 

L = wave length 

+[(c/am)
2 
- 1]

1/2 
if c>a

m 

[18-a] r
am 

= 

- (ciam)2]1/2
C<a 



if c>8m  +[(clp.m)2 _ 1]1/2 

c<13m 

[18-c] 

-1[1
(c/r3m)2]1/2 

r
m

2(8n/c)2  

(am)14 = i (p
mc2)-1  (r-a;111  sin Pm 

+ r
8m 

(am 
)
21 =

i[r
m
r
am 

sin P
m 
+ (r

m-1
1) r .

171 
 sin Qm] 

(am)22 = (r  m-1 ) cos Pm 
+ r

m cos Qm 
_ 

[20] 

(am ) 23 = 
(

pmc
2) -

1 (

ram 

 
sin P

m 
+ r

-1 
sin Qm) 

(3m 

P
m 

= kr
am

h
m 

[18-d] 
Q
m 
= kr

am
h
m 

The matrix [A
m
] is defined by: 

[19] [A
m
] = [am] [am-1] 

 [al] 

where the elements of the matrix [am
] are: 

(am)11 = rm 
cos P

m - (rm-1) 
 cos Qm  

sin P
m 
+ 

rmr8m 
Si 

(am)12 = i[(rm-l )ralm 

(am)13  = (pmc2)-1  (cos Pm  - cos Qm) 

(am)24 = (am)13 

(am)31  = pmc
2 

rm  (rm _0(cos P
m - cos Qm

) 

n Qm] 

sin Qm) 



(am)
32 

(am)33  

(am)34 

= i pmc
2
[(rm-1 )2  ram sin Pm m 

+ r r
Rm  sin Qm] 

= am  22 

. (a 
m)12 

(am)41 = i m  
p
m
c
2 
[r

2 
r
am 
 sin P

m 
+ (rm _ 1  )%- 2 rpm 

sin Qm] 

(am)42 = (am)31 

(am)43 (am)21 

(am)44 (am)11 

Ey letting [A] = [A
n
] = [a

n
] ... [a2] [a1 ], the 

functions F1 , F2, F3 and F4 may be written as: 

F
1 

= r
n 

r
an 

A
l2 (rn-1 )  A22 - ran 

A
32/pnc

2 

+ A
42
/p

n
c
2 

r
an 

A
31
/p

n
c2 F2 = r

n 
r
an 

A
11 

+ (rn
-1) A21 - 

+ A
41
/p

n
c
2 

[21] 

F
3 = -(rn-1) A

l2  + r
n 

r
bn 

A
22 

+ A
32
/p

n
c2 

2 r
bn 

A
42
/p

n
c 

 

F
4 = -(rn-1) All  + rn 

r
bn 

A
21 

+ A31/pnc
2 
+ 

r
bn 

A
41

/p
n
c
2 



2. Computational Procedure for the Wave Number  

The numerical computation of the wave number kw  

corresponding to the phase velocity c of Rayleigh 

waves is carried out by a trial and error procedure. 

The steps involved in the procedure are followed 

systematically. 

1. From the available data, tabulate quantities 

such as Poisson's ratio, mass density, layer thickness 

and wave velocity for each layer. 

2. It is usually convenient to take the thickness 

h1  of the first layer as the unit of length, p1  as the 

unit of density and (31  as the unit of velocity. The 

properties of the other layers may then be expressed in 

dimensionless form. The computations then give a 

relationship between dimensionless quantities kh1  and 

c/(31 . 

3. For any phase velocity c, compute the quan-

tities rm , ram  and rbm, Pm , Qm , etc. for each layer. 

4. It is possible to make a preliminary estimate 

of the value of k
w 
for the chosen value of c such that 

this value may be within an order of magnitude of the 

correct value. For this purpose, Sezawa's curves 

(1927) for the two-layer case or curves provided by 
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Oliver and Ewing (1957) may be used. If the computa- 

tion is carried out on a computer, k
w 
 may be given the 

value of unity to start with. 

5. With the chosen value of c and the assumed 

value of k
w
, compute the functions F1 , F2, F3  and F4  

in Eq. 21, and the ratios F1/F2  and F3/F4. 

6. If (F1 /F2  - F3/F4) is very small in magnitude 

compared to F1 /F2  or F3/F4, then the assumed value for 

k
w 
is acceptable. 

7. If the difference is significant, select 

another value of kw 
and repeat the procedure until the 

appropriate kw  for the chosen c is established. 
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TABLE 1. DATA FOR LAYERED SOIL SYSTEMS 

SYSTEM LAYER NUMBER 
LAYER 

THICKNESS 
ft 
(m) 

DENSITY 
lb/ft3 

(k g / m3 ) 

SHEAR WAVE 
VELOCITY 
fps 
(m/s) 

1 150 110 900 

(45.7) (1760) ( 274) 

2 150 120 2000 

(45.7) (1920) ( 610) 
1 

3 175 140 4000 

Bed Rock 

(53.3) (2240) 

145 

(2320) 

(1220) 

7500 

(2286) 

1 150 

(45.7) 

110 

(1760) 

900 

( 274) 

2 75 120 2000 

(22.8) (1920) ( 610) 

2 
3 100 130 3000 

(30.5) (2080) ( 915) 

4 150 140 4000 

(45.7) (2240) (1220) 

Bed Rock 145 7500 

(2320) (2286) 



TABLE 2. ABSOLUTE MAXIMUM ACCELERATIONS OF 

THE PILE CAP, FT/SEC2 (M/SEC2) 

Earthquake Case 1 Case 2 Case 3 Case 4 Base Rock 

Surface at 
distant 
location 
(input) 

Olympia, 1949 2.81 2.50 2.35 1.82 1.53 4.94 

(0.85) (0.76) (0.72) (0.55) (0.47) (1.51) 

El Centro, 1940 5.53 5.09 4.47 3.42 3.11 10.17 

(1.69) (1.55) (1.36) (1.04) (0.95) (3.10) 

San Fernando, 
22.12 20.65 18.30 14.22 12.35 40.30 

1971. 
(6.74) (6.29) (5.58) (4.33) (3.76) (12.28) 

(Pacoima Dam) 
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LEGEND 
A EARTHQUAKE FOCAL DEPTH 0-12 MILES 
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LEGEND 
- ISOLAG FOR UPWARD SHEAR WAVE PROPAGATION 

 ISOLAG FOR DOWNWARD SHEAR WAVE PROPAGATION 

a. IDEALIZED PATH OF INCLINED SHEAR WAVE PROPAGATION b. TIME LAG BETWEEN TOP AND 
IN SOIL LAYERS AND ISOLAGS BOTTOM INTERFACES OF LAYER k 

ALONG A VERTICAL DUE TO UPWARD 
AND DOWNWARD MOTIONS 

FIG. 4 INCLINED SHEAR WAVE PROPAGATION THROUGH SOIL LAYERS
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